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Indirect methods of numerical solution of variational
problems in rocket flight are reviewed, covering all
Russian literature data. Local methods of continuous
search are discussed, including a modified version of
Newton'!s method, variants of the steepest descent

method, solutions of variational problems with a free
right end of the trajectory. Comparisons of the various
methods are given, including the example of asymmetric
flight to Mars with return, resulting in a 20% advantage
over symmetrical flight, A minimum value N,, ~is derived

at which the flight will be accomplished at maximum
thrust., d},

The methods of numerical solution of variational problems are divided into
indirect and direct. In the indirect methods, the boundary-value problems are
solved for differential equations describing the optimal motion of the object
involved, The purpose of the indirect methods is the gradual improvement of a
certain set of parameters (deficient boundary conditions of the boundary-value
problem), The direct methods consist in optimizing the functionals by suc-~
cessive improvement of the control functions,

V.K.Isayev and V.V.Sonin

The purpose of the present paper is mainly to survey certain indirect
methods, The review covers primarily material published in the USSR,

Of the local methods of continuous search we consider Newton's method with
modifications proposed by us (including considerations on the correlation of
the modified Newton method with the gradient methods), a version of the method
of steepest descent, methods of solving variational problems with a free right
end of the trajectory, and methods for linear systems.,
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INTRODUCTION

The optimum programming problem arises each time an attempt is made to
construct a scientifically justified system or to determine the maximum possi-
bilities of existing systems, The problem is to single out, from all possible
programs for the control variables, the specific program which will yield the
maximum (or minimum) of some quantity at the end of the control process and
which, at the same time, will satisfy the prescribed boundary conditions.

The methods of numerical solution of variational problems are divided into
indirect and direct., The indirect methods consist in the solution of the
boundary problems for differential equations describing the optimum motion of /5
the object involved, The direct methods consist of methods of maximizing (or
minimizing) functionals., While the purpose of the indirect methods consists in
the gradual improvement of some set of parameters (deficient initial conditions
of the boundary-value problem), the purpose of the direct methods is the suc-
cessive improvement of the control functions, which means that direct methods
belong to the class of functional methods,

Let the specified dynamic system be described by the equations

or, in vector form:
x:f(x,u)t) , O<t< T (1a)

Required: to find the equation u = (uy, ..., ur) which, in the time T, will
transform the system (1) from its prescribed initial position

x(0)={x1°, ooy 2';:} i (2)

to a prescribed final position such that a certain functional S assumes its
maximum (or minimum) value under restrictions imposed on the control

u(U. (3)

Condition (3) makes the problem-honcléssical. The general apparatus for /6
solution of such a problem is the principle of the maximum (Bibl.l, 2). Special
modifications of the classical methods (Bibl.3 - 5) which are useful in solving

\
*e) x’v)' u’, .’..)uz)- t) 1, (l)
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certain problems of the form of eq.(l) or eq.(3) should also be mentioned. As
a branch of the nonclassical calculus of variations, the method of dynamic
programming (Bibl.6 - 7) occupies a special position in this respect.

The object of the present work is a general survey, primarily of certain

indirect methods. The review will cover mainly materials published in the
USSR,

I. METHODS OF SOLVING VARIATIONAL PROBLEMS OF FLIGHT
DYNAMICS REDUCED TO BOUNDARY PROBLEMS

1. General Outline of Indirect Methods

By means of the maximum principle, the variational problem [egs.(1)-(3)]
is reduced to a system of the order 2n

. s _ _H . |
X< 55 0 Pt Tax, (i=1,...,%), W
; .

where

H = z‘?lpt f’i (x,t t), (5)
=1 v '

In egs.{(4) the control u is replaced by the function u = u(x, p, t) obtained
from the condition that the function H = H(u) is to be minimum (or maximum),
with consideration of the condition (3).

If egs.(4) are integrated, the boundary-value problem reduces to a system
of algebraic or transcendental equations, If this is not the case, the solu-
tion of the boundary-value problem reduces to a successive solution of Cauchy
problems, and the problem will consist in organizing the selection of the cor- /7
responding lacking initial conditions.

In the arbitrary case, it is required to solve the problem of finding the
zeros of the system of equationsi:

Gl Yy s Yo )= 0 (intyym).  ©

The restriction (3) is automatically taken into account in calculating
eq.(6) by means of eqs.(4). We note that, with this approach, the problem with

* In the problem (1) - (3), in the general case, ¥ = (¥, eee, ¥,) =
=(p(1)’, oo ey p:).




fixed T and the problem with unfixed T are both solved in the same manner
(Bibl.e )t

We will characterize the iterative process by the value of the function

Gk=t

n
¢=.Za—ik¢i(?)9%(y), | (7)

l

where a,, are the constant coefficients of a positive quadratic form of determi-
nate sign. Instead of eq,(7) we may use:

n

Y= (70(5-:,5%& P:(y) e, (3))) | (8)

where ¢ is a continuous, monotonous, continuously differentiable function ¢ such
that y 2 0, and such that it vanishes only if ¢ vanishes,

In accordance with another paper (Bibl.9), the methods of finding the ex-
tremum (here,the Zero) of the function of the residue ¢ (which is sometimes
called the output or estimate function) may conveniently be classified into
three groups.

The first group includes the so-called methods of blind search (random /8
sampling, homeostat principle, scanning), which do not use information accumu-
lated during the preceding stage.

The second group includes the methods of continuous search [termed ™local
search" by Gel'fand (Bibl.9)]. These methods consist essentially in the con-
tinuous motion of the working point in parameter space in some selected manner
directly to the point at which ¢ reaches a minimum value, From the obtained
point a new direction is determined, along which the descent is again continued
to the local minimum of ¢, and so on, If the search is conducted in directions
which, once and for all, are fixed in a definite order, then we have an analog
of the Gauss-Seidel method. In the method of steepest descent (Bibl.1l0, Chap-
ter III) and the gradient method, the direction of search is determined from
the direction of the gradient ¢. The schemes for the latter two methods closely
resemble each other, It has been noted (Bibl.ll, 12) that these two methods
permit consideration of any restrictions on the phase coordinates; for great
deviations from the minimum it is preferable to use the method of steepest de-
scent, while the gradient method is better for small deviations., One feature
of the variational problems of rocket dynamics is that, when the system (L) is
put into dimensionless form, the process of solution of the problem may in some
cases be considered completed when the working point falls within the region
¢ <10°® -~ 107°, The most effective method in this case is that of Newton
(Bibl.10, Chapter IV) which converges more rapidly than the gradient method in
the neighborhood of small ¢, The methods of this group may be made still more /9
effective by the introduction of a memory, so as to determine the direction of



search with allowance for the points of the provisional minimum of the func-
tion ¢ found in the preceding stages of the iteration. Another paper (Bibl,13)
describes one algorithm of this kind for a nonlocal method of continuous search,
According to this algorithm, the working point moves successively in substanti-
ally different (independent) directions,

There is a special group, consisting of nonlocal search methods (Bibl.9)
in which the process of displacement of the working point in parameter space
ceases to be continuous, On "cyclization"™ of the working point, motion takes
place along the bottom of a "ravine", i,e., along the straight line connecting
two points of the relative extremum, found by the method of coarse descent from
two different points in parameter space, The length of the ravine step is taken
considerably greater than that of the gradient step. From the point so found,
a coarse descent is again performed, the direction of the ravine is refined,
and a ravine step is again taken., In some cases, the "ravine method" is ef-
fective and permits investigation of a broad region of small values of the
function of the residue ¢,

2, The Newton Method

We have already noted that the Newton method is one of the most effective
methods for the numerical solution of boundary-value problems, The modifica-
tion of that method proposed by us has proved highly useful (Bibl.8, 14). One
of the possible causes of divergence of the method is that at some stages of /10
the iteration the value of a single step, in the region of large values of ¢,
is too great, This is because the Newton method, like any local method, uti-
lizes only the information on the initial point of the iteration. On the basis
of this information, which gives essentially an idea of the function in a narrow
neighborhocod of the initial point, the position of the zero is predicted and
the next step is then taken in the direction so found,

The accuracy of the Taylor expansion, however, decreases with increasing
distance from the initial point.

In some cases, the following method may help to overcome contradictions of
this kind, We will introduce a correction at certain stages of the search, Of
course, this will not make it possible to get along altogether without addi-
tional information on the course of the process, although the amount of such
information should be kept to a minimum insofar as possible,

We will introduce the correction depending on the distribution of the
value of the residue in the boundary conditions at discrete points of the ray
connecting two successive points of the iteration., Consider the "gross error"
(residue) function:

D (k)= /Z ﬂz(yk-f"'d?k-i) ’

&=q

WD (k,2)]= P[P(Gie.s#2Pe-)]- 2




where k is the number of the iteration step; o is a parameter, 0 < ¢ < 1 in-
creasing linearly along the length of the ray (y,_,, ¥,1; T, is the length of

the k~th step of the iteration, At o = O and o = 1, eq.(9) gives the residue

for the (k-1)th and the k-th step, respectively: ¢(k, 0) = ¢(k~1, 1) and ¢(k,1).
On the appearance,at the k-th step, of signs of divergence of the Newton yARN
scheme: ¢(k, 0) < ¢(k, 1), we supplement the classical scheme by calculating the
value of the residue at one or several points of the ray [y,.,, ¥,l. The choice
of the number of N, and the disposition of ¢y(j =1, ..., N, ) optimum for con-
vergence, is a complex and unsolved problem,

The following method has proved in practice to be rather universal, Se-
lecting o = -%—, we calculate the residue ¢(k, -%—) in the center of the ray,
If o(kx, 0), o(k, —%—) and #(k, 1) form a downwardly convex function of a dis-
crete argument, then we can lay, through three points, the parabola approxi-

mating #(k, o) and find the point of the minimum o* of the Lagrange interpola-
tion polynomial:

x_ 3P(0)-4Pk, L) +P(k,1)
bk, 0)- 20 L)+ P, )] O

If the condition of downward convexity is not satisfied or if o < O, the
above-described operations are repeated, but this time on only half of the ini-

. 1
tial ray, O < o < 5 etc,

Approximation of a parabola is obviously not the only method of performing
a correction depending on the results of a "™probing"™ of the "interiority of the
step™., The following elementary algorithm has also proved useful in practice:

1) A "classical step™ is taken; 2) ¢(k, O) and ®(k, 1) are calculated; /12
3) if the condition 9(k, 1) < ¥(k, 0) is satisfied, the classical scheme is

retained; if it is not satisfied, ¢(k, -%—) is calculated; A ) if the condition
o(k, -%—) < ¢(k, 0) is satisfied, then the Newton scheme is again utilized; if
it is not satisfied, then ¢(k, —%—) is found, and so on,

This modification of the Newton method has been developed by us in solving
a number of problems of rocket dynamics since 1961, We considered two-point
boundary-value problems of the 10bh to 14%h order with as many as six unknown
parameters (Bibl.ll,, 15)., Satisfactory results were obtained in a check on this
method performed at the All-Union USSR Academy of Sciences by V,N,Lebedev and
his associates [cf,, for instance, (Bibl.16)].

Other papers (Bibl.15, 17) are devoted to the computational aspects of
)



Newton?s method. One author (Bibl.l5) mentions the effect of the accuracy of
solution of the Cauchy problem on the convergence of the iteration process, and
another author (Bibl.18) describes application of the integrals of the equa-
tions of optimum motion to an accuracy check, effect of the modification of
Newtonts algorithms on convergence far from the neighborhood of the solution,
congiderations on the limits of applicability of the Kantorovich modification
to this problem, etc,.Stensil (Bibl,17) in particular, discusses a highly in-
teresting method of correcting the Jacobi matrices for the values of the func-
tion (ﬁc

3. Brief Survey of the Results Cbtained by the Newton Method A3

Newton's method has proved effective for the numerical solution of a wide
range of problems in rocket dynamics: in calculating the program for the angle
of thrust orientation of a single-stage rocket with maximum velocity at apogee
(Bibl.14); in the search for optimum programs of variation of power, exhaust
velocity, and thrust orientation of a space vehicle on an interorbital flight
to Mars with limited power O < N < N,,. and limited variational range of ex-
haust velocity C,,, < C < C,,, (Bibl.1h, 15). Of the results obtained in one
of these papers zBibl.lh) we particularly note (Fig.l) the evaluation of the
influence of restrictions of the exhaust velocity on the power consumption
during an interorbital flight to Mars lasting 0.5 year (the heliocentric angle
of flight being m). That paper also presents an example of asymmetric flight
with return (Earth-Mars-Earth, total angle of flight 2m, duration 1 year),

\
giving a 20% advantage, in the sense of [ a®dt over symmetrical flight (on
[o}

which the heliocentric angle and time of flight are the same, going and return-
ing).

We present some results of a numerical study of the effect of the para-

Nﬂ ax

24(0)
prescribed values C,, = 20 km/sec, C,,, = 100 km/sec, with respect to the
characteristics of an optimal Earth-to-Mars flight (2,= 0.5 year), It is yARN
intuitively clear that there exists a minimum value N,, at which the flight
will be accomplished at maximum thrust [c(t) = C,,,, O<t <T]. For N <N,,,
there is no solution satisfying the boundary conditions (the boundary is arbi-
trarily shown by the broken line in Fig.2). As N increases, all the types of
optimum regimes described in another paper (Bibl.1k) occur on the trajectories,
Finally, beginning at some value of N¢, the motion is accomplished without regu-
lation of the exhaust velocity (C = C,,,) and the length of the passive phase
increases (Fig.2), Figure 3 shows the dependence of the final mass on the para-
meter N, under the same restrictions, It is well known that for an ideally
controllable system (C,,, = 0, C,,, = ), the problem of optimization is re-
solved into two independent problems: 1) to find the optimum trajectory from

meter N = ,{where M(0) is the initial mass] on the final mass at the

the minimum condition S = [“azdt (the trajectory part of the problem); 2) to
"o



find the program of mass consumption m(t) = my: (l + 2? J“ a2d§> and opti-

o}
mization of the weight ratios: final mass to parameter ﬁz from the value found
for S (the weight part of the problem), Figure 3 gives the values of the final
mass m(T) for an ideal system [determined by the formulas given in another paper
(Bibl,18, 19)] and those found by the numerical method for a flight with the
above characteristics. The existence of constraints (C,,,, C,,,) leading to
the appearance of passive phases will, in the general case, obviously make it
impossible to separate the problem of optimization into two_independent parts.
Thus, in the general case, instead of calculating m(T) and N from the final /15

relations as a function of [J a®dt, use should be made of relations of the type
"o
shown in Fig.B-

Newton's method has been used in solving problems of the launching of a
space vehicle from a circular orbit (Bibl.20), of the flight between two points
in a central field (Bibl.21), and of a flight between heliocentric orbits by
the aid of a solar sail (Bibl.22),

The application of Newtonts method in the work of American specialists is

described in Sect.2l of the review by Grodzovskiy et al (Bibl.23).

L. On the Connection between Newtonts Method and the
Method of Steepest Descent

Practical work has shown that the "cycling" of the iteration process some~
times involves a tendency of o to vanish, which is equivalent to an interrup-
tion of the descent (and to a decrease of the residue).

Let us rewrite eqs.(7) and (8) in the following form:

d)"' 99* “A“(F (7a)
9):@(@,‘ l\Al\@): (8a)

where o, is a row vector and |A|l the symmetric matrix of a positive-determinate
quadratic form; o is a column vector,

and

Let us give the vector y the increment &y, Then, the function ¢ will take

2®= 20, 1ANIFlay+ O(18yl"),

where Ay is a column vector of the increment, and

(11)

i
i
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(12)
IFll = .
.:212221 > E) O P %
. l
If there exists a vector T, satisfying the equation
{k) ' : ;
1E=0 N.=" %> (13)
then, obviously, the equation
(x) .
NF ot = -t (14)

will be satisfied for any a.

Substituting eq.(1l4) into eq.(11l), we obtain

4P =-2¢ IAl@at +0(lni®),

Similarly,

aF=- P (RIANP) 24 Al gt + 01ty ]?).

It follows from eqs.(15) and (16) that, for sufficiently small o, the in-
crements Ag and Ay will be defined:

A = 20, | ALY dyy = 25, JA N =20
and - . ; - : ; LT

AP= Y@ Al P)dd=-2:0 P (G lIAlIg) b G

By virtue of the positive determinacy of ¢, of the conditions imposed on 4y,
and of the conditions of existence of a solution of eqs.(13) or (14),

¢<0 ; a(“)< O (19)

9

(16)



This proves that, at each step of the iteration, there exists an g, 0 <
< o <1, such that the sequence of levels of the functions of residue arranged
in order of the number of the iteration step decreases monotonically:

d)('ykﬁ) < cb(yk) ’

where .
+4 K X Kk
7K = 'y + Oék 17 .
The geometrical interpretation of conditions (17), (18), and (19), or
(- g'm,o(,(ﬁ )’7 2, |
(-9l )y - 2¥'P

is that the vector 1, at every point [except that of the solution (6)] has a
positive direction on the direction of decline of the residue function, i.e.,
in other words, that T is nowhere tangent to the surface of the level ¢ or y

(20)

but makes an angle less than -g- with the direction of most rapid decline ¢,

The latter considerations have all been based on the assumption that the /18
relevant calculations have been absolutely accurate, In reality, it is precise-
ly this that cannot be assured for numerical calculations on a digital computer,

Owing to errors in computation, the angle between the directions of -grad ¢
and the vector 1) may reach or exceed -g-. If this takes place, then the se-

quence ¢(y*) ceases to be monotonic in k, so that at some k¥ there is a "con-
traction®™ of the working point to its initial position:

K34 x*

'd:"'nol J =Y

In this case, in using the algorithms of the modified Newton'!s method
(Bivl.8, 14), we can recommend: a) increasing the accuracy of computation (the
accuracy of the solution of the Cauchy problem for determining the vector o,
and the accuracy of computation of the Jacobi matrix); b) changing to the method
of steepest descent, i.e.,, to determine the increment dy not by the formula
dy = of but rather by the fornnla dy = —o grad ¢, or dy = -o grad ¢, searching
for the value of o corresponding to this choice,

Up to now, we started out from the existence of a solution T* for egs.(13).
Since the iteration is performed from the point y¥, which is not a root of

10



eq.(6), the case when eq,(13) is an inhomogeneous system is of interest here,
The condition of unsolvability of such a system is that the Jacobi matrix |IF Yl

shall vanish:
|F|=0 (21)

In the general case, eq,(21) is the equation of an (m-1)-dimensional surface
in an m-dimensional space(y;, «.., ¥, ). The following assertion is valid: The
vector of grad ¢ (or of grad ¥) vanishes at the point y, not being a solution
of eq.(6), if and only if y belongs to the surface (21).

From eqs,(17) and (18) we have |
9%d & =2 ¢ |AIIFI (22)
and

(23)

12 P= P 1 ALR) 26, 1 ANIFY -

By virtue of the condition ¢ > 0, grad ¢ and grad ¢ vanish simultaneously,
so that we will confine ourselves to a consideration of the vector of grad ¢.
By hypothesis, ¢, does not vanish, and [|A|l is the matrix of the positive-deter-
minate quadratic form for which the Sylvester criterion is valid, whence, in
particular, it follows that its determinant does not vanish, i,e., that the
system of linear equations

S;sf ll/\ “ = ();4 )

where O, is a zero row vector, has only the trivial solution ¢, = Oy.

By virtue of the contradiction with the condition we conclude that the

vector
We have, further: o
m IF)=0, . (24)

Since y, is a nonzero vector, eq. (24) can mean only that |F| = 0, which was to
be proved,

The assertion just obtained is a necessary (but not a sufficient) con- /20
dition of the vanishing of grad ¢. Thus, it is possible to adduce the example
of a surface (21) on which grad ¢ vanishes at a single point,

This result permits posing a new problem: that of the existence (and search
for) a certain function y, optimum for an assigned space Y [i.e., in the

1



language of Gelffand (Bibl.9), that of improving the organization of the func-
tion 4], In any case, on the basis of the result obtained, we can hope to in-
troduce several functions ¥;, ese, ¥,, such that the points on these, where
grad ¢, = 0, «.., grad ¢, = O, are assumed not to coincide except for the point
at which ¢, = «os = ¢, = O This problem and all its aspects remain unsolved
(for example, qualitative correspondence, in the sense of change of level of
each of the residues when the working point moves in the parameter space).

A comparative analysis of Newton's method and the method of steepest de~
scent, together with considerations on their use in the problem of determining
%he parameters of the trajectory from measurement data, will be found elsewhere

Bibl.24).

5. The Method of Steepest Descent

While Newton's method is based on the solution of the system (13), the
method of steepest descent leading to the decrease of the function ¢ =

= % «; reduces to one of the methods of integrating the system of ordinary
1=1

differential equations (Bibl,10, 24 - 27)

2¢ . Y

s - 1 K=
? - -
Ksy L3
where the variable S is the parameter along the curve of descent in the m- /21

dimensional space Y = gyl, eees ¥y} [80 that to each S there corresponds y, =
=y,(8), i=1, ..., m] with initial data corresponding to the zero-th approxi-
mation of the variables y,. Effective variants of the method of steepest de-
scent, developed in 1957, are discussed in another paper (Bibl,25, 26) in their
application to the problem of working up the astronomical observations of the
first artificial satellites, later generalized to the case of problem-solving
in determining the orbits of spacecraft flying to the moon or the planets of
the solar system, A similar method was proposed by Gavurin (Bibl.27).

A variant of the method of steepest descent (Bibl.25 - 27), likewise de-
signed to overcome the computational difficulties connected with the complex
relief of the function ¢(y,, «s., ¥, ) and with the strong inhomogeneity of the
slope of the descent for the individual variables, is based on the following
transformation of the variables y, to new variables o, ¢

9’;"90‘-(%,,..,%»),(1;:1,...,m)_ (26)

The equations of motion on the gradient lines (25) in the new variables
are greatly simplified, and take the form:

12



(27)

do, P /
Frande /s (v=1 ).

The solution of eq.(27) is obtained in the form of

h )= G(1-725 ), (=t ym) -
w-aly); $=Z 4]
A C IR,

Thus, motion in the subspace of the new variables (as which we select the
components of the function of total residue ¢) proceeds along the straight
lines (28), i,e., in a certain sense most "rapidly" toward the solution sought
¢ = O, The actual search for the initial variables is performed by the aid of
the system (27), which may be transformed into the following form:

a; ﬂ""a’zzl+'“+d, %-ng: (29)

0% - |
y (by ) (1/)‘/=4, )PW).

is the zero-th approximation

where

(30)

Consequently, this variant of the steepest descent reduces to the integra-

tion of a system of the form of egs.(27) over the interval O < s s:«&?j The
method is readily generalized to the case when the number of equations ¢, = O
exceeds the number of unknown parameters y,, which occurs in the statistical
work-up of an excess number of measurements.

6. Methods of Solving Special Problems : /23

The special problems include the extensive practical class of problems
with a free right end of the trajectory (Bibl.28, 29). Without limitation of
generality, let us consider the problem with the fixed time T (in a problem
with free time, there is one condition that determines the end of the process,
and all the procedure to be described below may be applied without trouble to
this case),

Let us describe the algorithm (Bibl.28):

13



1) Assign as first approximation (for instance, from physical considera-
tions) a certain allowable control u{})(t), 0 <t < T, 2) Substituting the
control ufl) (t) for u in the system (la), we integrate this system for the
initial conditions (2) over the interval [0, T], and denote the solution so ob-
tained by x(1) (t). 3) Substituting u'® (t) and x‘*)(t) into the second part of
the system .(4):

dpy M p )
Y T

we integrate eqs,(31l) “from right to left" (from T to 0) under the initial

conditions (2) |
p; (T)=-c;, | (32)

B
where C, are coefficients in the functional S = ¢ C,x,(T) of the Mayer problem,
11

(t= /, Tt “’); (31)

Let us denote the resultant solution by p¢2’ (t). /2L

L) Substituting x‘?)(t), p‘?) () into eq.(6), we then express H as a func-
tion of u and t, We now determine the next approximation for the control
uf2) (t) from the maximum principle:

) P ) ma NP 2)
- UWE - :

5) Using u® (t), we find successively x'2’(t), p‘® (t), etc. If the pro-
cess of successive approximations is convergent, we continue it until the suc-
cessive approximations differ by no more than the allowable accuracy limit,

The above-described algorithm is computationally simple, i,e., at each step
it reduces to the solution of two Cauchy problems: “from left to right" for
the system (1) and "from right to left" for the system (31).

For the case of linear systems in which f = A(t)x + b(t)u, application of
this algorithm gives an exact solution in the second approximation (the exact
values of the conjugate variables and the optimum control being determined in
the first approximation, and the coordinates in the second ).

Krylov (Bibl,28) also discusses using the method on a digital computer,
with special reference to the economy of the machine memory., As an illustra-
tion of the application of the method, the authors consider the model problem
of programming the angle of attack and the choice of one of two discrete values
of the characteristic value during the flight of a material point to maximum
range through a resisting medium,

The problem of the flight of a vehicle with an engine to maximum range /25
in an atmosphere has been reduced (Bibl.29) to the problem with a free right
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end of the trajectory. Under certain assumptions, the value of the vector p(T)
is completely determined, so that the values of the phase coordinates at the
time t = T are the unknown parameters, The above author organizes the search
for these on the basis of Newton's method, integrating the system (L) "from
right to left".,

7. Linear Systems

The optimum processes of flight dynamics are described by essentially non-
linear differential equations, Nevertheless, we should like here to call the
readerts attention to one interesting numerical method of solving problems of
optimal control - a method which in its original form was developed for linear
systems (Bibl.30, 31) and was subsequently generalized to other classes of prob-
lems (Bibl.32),

This method reduces the problem of finding the optimal control u(t) that
will minimize the coordinate x,(T) under the condition X(T) = x}, ..., X}) =
= X, to the problem of finding a reference hyperplane to the set M(T) of points
of an (n+l)-dimensional space to which the system (1) can be transferred by the
aid of the allowable control u(t), O <t < T. Under the assumption (Bibl.l) of
"strict convexity of M(T)", the assigned hyperplane to the set M(T) (the exist-
ence of which follows from the maximum principle) uniquely determines the con-
trol and thus also the point X(T) = {x,(T), X, (T)} of the (n+l)-dimensional /26
space, To find the reference hyperplane to the set M(T) at the point of inter-
section of the set M(T) and the straight line x = X,, with the smallest coordi-
nate x,, a process of successive approximation has been proposed (Bibl,30-32),
A feature of this approach is that the process of successive approximation to
the initial hypersurface is monotonic (Bibl.32).

This approach may also be of interest in connection with the computational
procedure proposed by Bellman and Kalaba (Bibl.33), which reduces the solution
of the boundary-value problem for a nonlinear system of differential equations
to the solution of the analogous problem for a sequence of linear equations
which, under certain assumptions, converge to the solution of the nonlinear
system,

II. DIRECT METHODS /27

The direct methods have been extensively discussed in numerous papers
(Bibl.10, 23, 34), which give exhaustive bibliographical references to which
the reader is referred,

Here we merely note the main trends in the development of methods of this
type:

1. The method of the functional of steepest descent (Bibl,10), employed in

the problem of minimization of [Ta2dt for a flight between heliocentric orbits
(o}
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(Bibl.35).

2. The gradient method (Bibl.3L, 36 - 39).

3. The Ritz method (Bibl.24, 35).
[In solving the problem of the minimum of jaa?dt, Ivanov (Bibl.35) notes that

o

the efficiency of the method of the descent functional is substantially greater
(by one or two orders of magnitude) than that of the Ritz method, in which the
coefficients are determined by the method of steepest descent].

L. The broken-lines method (Bibl.,0).

A review of these methods would be beyond the scope of this paper.
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